
CodeRed

Containers
Without the Magic

Vince Salvino
@vincesalvino

slides: coderedcorp.com/resources

PyOhio 2018

@vincesalvino

CodeRed

What is a Container?

@vincesalvino

CodeRed

Common Answer = Dark Magic

Look how “easy” it is to use containers…

@vincesalvino

$ apt-get install docker
$ docker run hello-world

CodeRed

Real Answer = Bundle

• Bundle ALL software and system dependencies of your app

• Less overhead and complexity than a virtual machine

• More control than a requirements.txt

@vincesalvino

CodeRed

That’s nice…
so why should I care?

@vincesalvino

CodeRed

Running your Python app “normally”

• But wait… which version of python am I using?
• But wait… something in my requirements.txt conflicts with a

different version of something else on the system.

@vincesalvino

$ pip install –r requirements.txt

$ python myapp.py

CodeRed

And then the gods created virtualenv

• Now I can run different versions of python in each virtualenv!
• Now I can run different versions of EVERYTHING in my

requirements.txt in separate virtualenvs!

@vincesalvino

$ virtualenv myapp

(myapp)$ pip install –r requirements.txt

(myapp)$ python myapp.py

CodeRed

But the gods were still not pleased
• My system only comes with python 2.7 and 3.2

• Live with it.
• Compile a different version of python for your system.
• Install a sketchy binary or PPA from some random dude on the internet.

• My app needs a SYSTEM library installed, that is outside the
scope of pip

• Well on fedora you need to install [package]
• On ubuntu you can install [package], but that version has a bug that doesn’t work

with our app
• Fools! - your app should only be pure python!

@vincesalvino

CodeRed

Some tried to please the gods by sacrificing
resources to virtual machines
• But nobody wants that mess
• Why have we resorted to creating an entire OS image just to run

our app?
• Bloatware, USA – now my nice lean app needs multiple

gigabytes of memory and a 20GB disk just to run a copy of the
OS and all those system libraries.

@vincesalvino

CodeRed

So the gods created containers

• Actually, the concept of containers has existed for a long time
(BSD jails - but only heathens use BSD)

• Containers essentially let you specify a collection of system
packages, code, files, etc. and run that all natively on the OS.

• It’s like virtualenv for your entire OS!!!

@vincesalvino

CodeRed

[recap]

That’s nice…
so why should I care?

@vincesalvino

CodeRed

• If you ever needed a different version of python…
• If you ever had trouble installing a system dependency…
• If you ever needed to install your app on multiple systems (or

multiple apps on one system) and found it involving a lot of
tedium…

• If you want to easily distribute a fully working version of your
app to others…

@vincesalvino

…then you might care about containers.

CodeRed

That’s cool…
How do containers actually work?

@vincesalvino

CodeRed

Container Tech Comparison

virtualenv
• A very basic containerization

system
• Specifically for python
• Only handles python packages

@vincesalvino

requirements.txt

Django==1.11

wagtail==2.0.1

mysqlclient

CodeRed

Container Tech Comparison

What if we had virtualenv
for the whole system?!?!
• Install python versions
• Manage apache/system

dependencies

@vincesalvino

super requirements.txt

Django==1.11

wagtail==2.0.1

mysqlclient

Apache==2.4

Python==3.6

mod_wsgi

mod_redirect

imagemagick

CodeRed

… we do! It’s called LXC or Docker

@vincesalvino

CodeRed

Container Tech Comparison

LCX
• Linux Containers
• Starts from a base image which is like

a lightweight mini-distro (ubuntu, etc.)
• Runs all the libraries and code of the

mini-OS natively using the host’s
kernel.

• Similar experience to a VM, but much
lighter and not actually virtualized.

Docker
• Very portable (Windows, Mac, Linux,

cloud-native)
• Images only include the exact

software you specify.
• Other software dependencies are

handled by docker behind the scenes.
• Runs only the libraries and code you

specify directly on the host.

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)
• Set up a wsgi, jump through hoops, create a virtualenv, set things to

start on boot, etc.

@vincesalvino

CodeRed

Thinking in terms of a LAMP stack
• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik,

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)
• Set up a wsgi, jump through hoops, create a virtualenv, set things to

start on boot, etc.
• Copy my code to the server and restart Apache

@vincesalvino

CodeRed

Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other
system dependencies.

@vincesalvino

CodeRed

Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other
system dependencies.

• Pre-load my code in the docker image.

@vincesalvino

CodeRed

Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)

@vincesalvino

CodeRed

Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)
• Run the docker image

@vincesalvino

CodeRed

Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)
• Run the docker image

My docker image will now run EXACTLY the same on any OS because all dependencies and
files have been pre-defined and are managed by docker, instead of being managed by the
OS or manually by the sys admin.

@vincesalvino

CodeRed

Visualized LAMP stack

@vincesalvino

Kernel (system)

ApachePythonWSGI

My App (code)

Giant web of dependencies (system)

CodeRed

My App (docker image)

Visualized Docker stack

@vincesalvino

Kernel (system)

WSGI

Docker (system)

Python Apache My App (code)

CodeRed

Quick Start

@vincesalvino

CodeRed

Let’s Dockerize your Python app

My app looks like this:

@vincesalvino

/myapp/
myapp.py
requirements.txt

CodeRed

Let’s Dockerize your Python app

Now add a Dockerfile. Think of the dockerfile as a
requirements.txt for your entire system.

@vincesalvino

/myapp/
myapp.py
requirements.txt
Dockerfile

CodeRed

Let’s Dockerize your Python app

@vincesalvino

Dockerfile

FROM python:3.6

COPY . /code/
RUN pip install -r /code/requirements.txt

CMD python /code/myapp.py

CodeRed

Let’s Dockerize your Python app

@vincesalvino

Dockerfile

FROM python:3.6

COPY . /code/
RUN pip install -r /code/requirements.txt

CMD python /code/myapp.py

This is a simple example, using the actual
python file as the final CMD command.

For something like a LAMP stack, this
Dockerfile would include installation of
apache and dependencies, and the final
CMD command would probably be to
start apache.

CodeRed

Let’s Dockerize your Python app

We just created a Dockerfile that defines everything our app
needs, and what to execute

Now we build a docker image of our app

@vincesalvino

/myapp $ docker build –t myapp_image

CodeRed

Let’s Dockerize your Python app

• This one command provisions all dependencies we defined for
our app, and packages it up into a single container image.

• This image is a binary distributable. Think of it like an “.exe” that
contains our app and everything our app needs, and tells the
system what to execute.

@vincesalvino

/myapp $ docker build –t myapp_image

CodeRed

It’s all dockerized
Now we have a docker image called myapp_image

@vincesalvino

CodeRed

Run your Python app

Now we can create and run an actual container (instance of our
app) from the docker image

@vincesalvino

$ docker run myapp_image

CodeRed

Remember that dark magic from the
first slide…
Hopefully now it makes a little bit of sense.

@vincesalvino

$ apt-get install docker
$ docker run hello-world

CodeRed

Avoiding
“New Shiny Syndrome”

@vincesalvino

CodeRed

Containers provide a way of bundling code
AND system dependencies into one binary

When to USE containers
• App runs on multiple systems
• Multiple different apps run on

one system.
• Easily distribute a fully

working app to other systems
or users.

When NOT TO USE containers
• One app per system
• System dependencies do not

need upgraded or changed
frequently

• The app does not get
distributed to other systems
or users.

@vincesalvino

CodeRed

Let’s Talk
@vincesalvino

slides: coderedcorp.com/resources

salvino@coderedcorp.com

@vincesalvino

mailto:salvino@coderedcorp.com

	Containers�Without the Magic
	What is a Container?
	Common Answer = Dark Magic
	Real Answer = Bundle
	That’s nice…�so why should I care?
	Running your Python app “normally”
	And then the gods created virtualenv
	But the gods were still not pleased
	Some tried to please the gods by sacrificing resources to virtual machines
	So the gods created containers
	[recap]��That’s nice…�so why should I care?
	Slide Number 12
	That’s cool…�How do containers actually work?
	Container Tech Comparison
	Container Tech Comparison
	… we do! It’s called LXC or Docker
	Container Tech Comparison
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of a LAMP stack
	Thinking in terms of Docker
	Thinking in terms of Docker
	Thinking in terms of Docker
	Thinking in terms of Docker
	Thinking in terms of Docker
	Visualized LAMP stack
	Visualized Docker stack
	Quick Start
	Let’s Dockerize your Python app
	Let’s Dockerize your Python app
	Let’s Dockerize your Python app
	Let’s Dockerize your Python app
	Let’s Dockerize your Python app
	Let’s Dockerize your Python app
	It’s all dockerized
	Run your Python app
	Remember that dark magic from the first slide…
	Avoiding�“New Shiny Syndrome”
	Containers provide a way of bundling code AND system dependencies into one binary
	Let’s Talk

