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What is a Container?

@vincesalvino



CodeRed

Common Answer = Dark Magic

Look how “easy” it is to use containers…

@vincesalvino

$ apt-get install docker
$ docker run hello-world
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Real Answer = Bundle

• Bundle ALL software and system dependencies of your app

• Less overhead and complexity than a virtual machine

• More control than a requirements.txt

@vincesalvino
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That’s nice…
so why should I care?
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Running your Python app “normally”

• But wait… which version of python am I using?
• But wait… something in my requirements.txt conflicts with a 

different version of something else on the system.

@vincesalvino

$ pip install –r requirements.txt

$ python myapp.py
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And then the gods created virtualenv

• Now I can run different versions of python in each virtualenv!
• Now I can run different versions of EVERYTHING in my 

requirements.txt in separate virtualenvs!

@vincesalvino

$ virtualenv myapp

(myapp)$ pip install –r requirements.txt

(myapp)$ python myapp.py
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But the gods were still not pleased
• My system only comes with python 2.7 and 3.2

• Live with it.
• Compile a different version of python for your system.
• Install a sketchy binary or PPA from some random dude on the internet.

• My app needs a SYSTEM library installed, that is outside the 
scope of pip

• Well on fedora you need to install [package]
• On ubuntu you can install [package], but that version has a bug that doesn’t work 

with our app
• Fools! - your app should only be pure python!

@vincesalvino
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Some tried to please the gods by sacrificing 
resources to virtual machines
• But nobody wants that mess
• Why have we resorted to creating an entire OS image just to run 

our app?
• Bloatware, USA – now my nice lean app needs multiple 

gigabytes of memory and a 20GB disk just to run a copy of the 
OS and all those system libraries.

@vincesalvino
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So the gods created containers

• Actually, the concept of containers has existed for a long time 
(BSD jails - but only heathens use BSD) 

• Containers essentially let you specify a collection of system 
packages, code, files, etc. and run that all natively on the OS.

• It’s like virtualenv for your entire OS!!!

@vincesalvino
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[recap]

That’s nice…
so why should I care?

@vincesalvino
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• If you ever needed a different version of python…
• If you ever had trouble installing a system dependency…
• If you ever needed to install your app on multiple systems (or 

multiple apps on one system) and found it involving a lot of 
tedium…

• If you want to easily distribute a fully working version of your 
app to others…

@vincesalvino

…then you might care about containers.
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That’s cool…
How do containers actually work?
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Container Tech Comparison

virtualenv
• A very basic containerization 

system
• Specifically for python
• Only handles python packages

@vincesalvino

# requirements.txt

Django==1.11

wagtail==2.0.1

mysqlclient
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Container Tech Comparison

What if we had virtualenv
for the whole system?!?!
• Install python versions
• Manage apache/system 

dependencies

@vincesalvino

# super requirements.txt

Django==1.11

wagtail==2.0.1

mysqlclient

Apache==2.4

Python==3.6

mod_wsgi

mod_redirect

imagemagick
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… we do! It’s called LXC or Docker
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Container Tech Comparison

LCX
• Linux Containers
• Starts from a base image which is like 

a lightweight mini-distro (ubuntu, etc.)
• Runs all the libraries and code of the 

mini-OS natively using the host’s 
kernel.

• Similar experience to a VM, but much 
lighter and not actually virtualized.

Docker
• Very portable (Windows, Mac, Linux, 

cloud-native)
• Images only include the exact 

software you specify.
• Other software dependencies are 

handled by docker behind the scenes.
• Runs only the libraries and code you 

specify directly on the host.

@vincesalvino
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Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)

@vincesalvino
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Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)

@vincesalvino
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Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
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Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app

@vincesalvino



CodeRed

Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)
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Thinking in terms of a LAMP stack

• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)
• Set up a wsgi, jump through hoops, create a virtualenv, set things to 

start on boot, etc.

@vincesalvino
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Thinking in terms of a LAMP stack
• Start with a pre-defined OS image (Debian 8)
• Install my app’s system dependencies (e.g. imagemagik, 

libmysqlclient-dev)
• Install the version(s) of python from OS (2.7 and 3.4)
• Install virtualenv so I can run more than one python app
• Install the version of Apache from OS (Apache 2.4.12)
• Set up a wsgi, jump through hoops, create a virtualenv, set things to 

start on boot, etc.
• Copy my code to the server and restart Apache

@vincesalvino
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Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other 
system dependencies.

@vincesalvino
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Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other 
system dependencies.

• Pre-load my code in the docker image.

@vincesalvino
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Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other 
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)
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Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other 
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)
• Run the docker image

@vincesalvino
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Thinking in terms of Docker

• Pre-define a docker image that includes apache, python, and other 
system dependencies.

• Pre-load my code in the docker image.
• Pre-define what to do when it starts (e.g. start apache)
• Run the docker image

My docker image will now run EXACTLY the same on any OS because all dependencies and 
files have been pre-defined and are managed by docker, instead of being managed by the 
OS or manually by the sys admin.

@vincesalvino
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Visualized LAMP stack

@vincesalvino

Kernel (system)

ApachePythonWSGI

My App (code)

Giant web of dependencies (system)
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My App (docker image)

Visualized Docker stack

@vincesalvino

Kernel (system)

WSGI

Docker (system)

Python Apache My App (code)
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Quick Start
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Let’s Dockerize your Python app

My app looks like this:

@vincesalvino

/myapp/
myapp.py
requirements.txt



CodeRed

Let’s Dockerize your Python app

Now add a Dockerfile. Think of the dockerfile as a 
requirements.txt for your entire system.

@vincesalvino

/myapp/
myapp.py
requirements.txt
Dockerfile
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Let’s Dockerize your Python app

@vincesalvino

# Dockerfile

FROM python:3.6

COPY . /code/
RUN pip install -r /code/requirements.txt

CMD python /code/myapp.py
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Let’s Dockerize your Python app

@vincesalvino

# Dockerfile

FROM python:3.6

COPY . /code/
RUN pip install -r /code/requirements.txt

CMD python /code/myapp.py

This is a simple example, using the actual 
python file as the final CMD command.

For something like a LAMP stack, this 
Dockerfile would include installation of 
apache and dependencies, and the final 
CMD command would probably be to 
start apache.
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Let’s Dockerize your Python app

We just created a Dockerfile that defines everything our app 
needs, and what to execute

Now we build a docker image of our app

@vincesalvino

/myapp $ docker build –t myapp_image
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Let’s Dockerize your Python app

• This one command provisions all dependencies we defined for 
our app, and packages it up into a single container image.

• This image is a binary distributable. Think of it like an “.exe” that 
contains our app and everything our app needs, and tells the 
system what to execute.

@vincesalvino

/myapp $ docker build –t myapp_image
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It’s all dockerized
Now we have a docker image called myapp_image

@vincesalvino
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Run your Python app

Now we can create and run an actual container (instance of our 
app) from the docker image

@vincesalvino

$ docker run myapp_image
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Remember that dark magic from the 
first slide…
Hopefully now it makes a little bit of sense.

@vincesalvino

$ apt-get install docker
$ docker run hello-world
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Avoiding
“New Shiny Syndrome”
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Containers provide a way of bundling code 
AND system dependencies into one binary

When to USE containers
• App runs on multiple systems
• Multiple different apps run on 

one system.
• Easily distribute a fully 

working app to other systems 
or users.

When NOT TO USE containers
• One app per system
• System dependencies do not 

need upgraded or changed 
frequently

• The app does not get 
distributed to other systems 
or users.

@vincesalvino
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Let’s Talk
@vincesalvino
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