Using

NLP & Django

to build a

movie suggestion site
ana

twitterbot

Vince Salvino

,’/ : 2 - :
salvino@coderedcorp.com \ | ‘ y
Djangocon US 2016 / S\ @ N
' \ Y B N
/ ‘

N
\

mailto:salvino@coderedcorp.com

Slides Available Online

www.coderedcorp.com/resources

~

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

About CIFF

« The Cleveland International Film Festival (CIFF) is a two-week long event

featuring hundreds of foreign, independent, and new films making their debut
on the silver screen.

« Was held in April 2016. This year marked CIFF’s 40t anniversary.

« Very large and important annual event for Cleveland, OH. This year featured
over 400 films and shorts.

« | myself am not a film buff, but do appreciate a well told story.
« Shout out to “Morris from America” — a great film | saw this year.

* 1 am not affiliated with CIFF.

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

About the Project

« Our team built a movie recommendation engine for the film fest. This was a
non-official/hobby project, so we worked with publicly available data.

« Built a Django project that: scrapes the film data from a website, builds a film
similarity index using Django models and natural language processing, and
automatically shows suggested films via a website and twitterbot
(ciff.coderedcorp.com and @CIFFbot).

« Project was built using public data and open source software.

« Film data scraped from www.clevelandfilm.org. :

« Natural language processing done with NLTK.

« Twitter connectivity done using Twitter APl (twython) and cron jobs to schedule ~
tweets.

Project was implemented in 2 days and is 100% Python, excluding use of cron.

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

http://www.clevelandfilm.org/

About this Talk

1. Put on our search engine hats and scrape data from a website.

2. Make custom Django management commands.

3. Explore a few basic concepts in natural language processing.
4. Explore functionality in the NLTK.

5. Using the Twitter APl to make a dumb twitterbot

6. Creating a cron job that invokes a Django command.

7. Implement a simple whoosh/haystack search in Django (time permitting).

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

First Things First

« Look at the CIFF website.

« ldentify what data we need and how to represent it.

« Make models.

Movie Showtime

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

1. Scraping the Data

urllib BeautifulSoup

- Make a request and fetch the page. « “the browser” — manipulate and
parse the HTML doc’s markup.

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

2. Django Management Command

« https://docs.djangoproject.com/en/1.9/howto/custom-management-

commands/

« It’s really this easy:

from django.core.management.base import BaseCommand
from web.util.crawler import scrape_movies

class Command(BaseCommand):
help = 'Scrape film data from clevelandfilm.org’

can_import_settings = True

def handle(self, *args, **options):
scrape_movies()

CoDERED BUILDING BRILLIANT TECHNOLOGY

https://docs.djangoproject.com/en/1.9/howto/custom-management-commands/

2. Django Management Command

python manage.py help

[staticfiles]
collectstatic
findstatic
runserver

[web]

nlpscore

scrape_movies

update_twitter
(ciffbot)developer@vboxhost:~/src/ciffbot$ I

-
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

3. Natural Language Processing
TF-IDF

« “Term Frequency, Inverse Document Frequency”.
« One of the most simple ways to determine document similarity.

« Break down the doc into individual words, throw away the stopwords (common

words such as: the, a, an, and, is, etc.), and then looks to see which docs have
highest number of words in common.

- Effective, but not very smart.

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

3. Natural Language Processing
TF-IDF

“I went to the bank to deposit money”.

“I slid down the bank by the lake”.

TF-IDF says these are similar.

But in reality we know that “bank” has completely different meanings in both
contexts.

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

3. Natural Language Processing

Word Sense Disambiguation

« The meaning of the word is determined based on the context, not just the
spelling alone.

« First break each document into sentences, and then analyze each word of each
sentence.

« Once we have determined the meaning of each word within the context of
each sentence, look for lemmas to that meaning.

« Lemma is an abstract term that defines the true meaning of a word before you
have spoken or written the word, but have an idea in your head. You can think
of lemmas as synonyms.

. \‘o. \
CopERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \}

3. Natural Language Processing

Word Sense Disambiguation

aL 6Syid G2 GKS o6ly]l G2 RSLI2aArid Y2ySeéecE

BANK: meaning: a financial institution that accepts deposits and channels the
money into lending activities.

BANK: lemmas: bank, banking company, financial institution

4L AftAR R2g6y GKS olyl o0& GKS f118¢

BANK: meaning: sloping land (especially the slope beside a body of water). =

BANK: lemmas: slope, curve, side, edge, shore

-
. \‘o \
COoODERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \}

3. Natural Language Processing

Sentiment Analysis

« Determine “feeling” of the text.
« Typically this is “positive” or “negative”.
« By combining with word sense disambiguation, sentiment analysis can be used

to infer additional advanced sentiments

« A negative sentence from a customer about finance might indicate frustration or |
confusion.

« A negative product review might indicate disapproval.

« A negative comment on politics might indicate harsher feelings such as disgust.

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

4. NLTK (and scikit)

import nltk
TF—l D F import regex
from nltk.corpus import stopwords
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.stem.porter import PorterStemmer
from nltk.wsd import lesk
from sklearn.feature_extraction.text import TfidfVectorizer

from web.models import Movie, Comparator

filmtexts = []
for film in films:
change to lowercase and remove punctuation
filmtexts.append(_ clean(_remove_author(film.description)))
Create TF-IDF metrics
vect = TfidfVectorizer(tokenizer=_tfidf_ tokenize)
tfidf = vect.fit_transform(filmtexts)

return (tfidf * tfidf.T).A -

http://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html

"
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

4. NLTK

Word Sense Disambiguation

Code is a little more complicated...

http://www.nltk.org/howto/wsd.html

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

http://www.nltk.org/howto/wsd.html

4. NLTK

Sentiment Analysis

« Used VADER sentiment analyzer

« Was trained on dataset of 10,000 tweets and 10,000 movie reviews from rotten
tomatoes.

« Each one of these tweets and reviews was labeled by a human as being
"positive" or "negative".

« Rates on a scale from -1.0 to +1.0 representing negativity or positivity.

« http://www.nltk.org/howto/sentiment.html

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

http://www.nltk.org/howto/sentiment.html

4. NLTK

Sentiment AnalySiS import regex

from nltk.corpus import stopwords

from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.stem.porter import PorterStemmer

from nltk.wsd import lesk

from sklearn.feature_extraction.text import TfidfVectorizer
from web.models import Movie, Comparator

results = []
sid = SentimentIntensityAnalyzer()
counter = @
for film in films:
results.append(
sid.polarity scores(
_remove_author(film.description).lower())[' compound’]
)
print("Sentiment {@}".format(counter))
counter += 1
return results

"
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

4. NLTK

Crunch the numbers and compare results:

« Our crawler pulled in 436 films from the clevelandfilm.org website.

« Every word in every sentence of every film was broken down, analyzed, and
then compared to every other film.

 In computer science lingo, this means O(n2-n) comparison, or in human terms:
189,660 different comparisons.

« Use of “Comparator” model to store the comparisons between “Movie”
models.

\‘o. \
CoOoDDERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \\}

5. Twitter AP

https://apps.twitter.com/

Create an app.

Since you are owner of app, the app will have access to your account.

We will not be building in an OAuth / grant permission process
« For that, check out python-social-auth.

« We will just use our API keys directly.

We will use Twython to access make Twitter API calls.

« http://twython.readthedocs.io/en/stable/usage/basic usage.html#updating-status ~~

CopERED . BUILDING BRILLIANT TECHNOLOGY 2016

https://apps.twitter.com/
http://twython.readthedocs.io/en/stable/usage/basic_usage.html#updating-status

T ! A Pl from django.conf import settings
. \/\/l (E?r’ from django.utils import timezone
from web.models import Showtime, Comparator

from twython import Twython
from datetime import timedelta

now = timezone.now().replace(second=0, microsecond=0)
minutes future = (now + timedelta(minutes=5)).replace(second=8, microsecond=0)

now starting showtimes = Showtime.objects.filter(start_time__ range=(now, minutes_future),
has_now_playing tweet=False)
if now_starting _showtimes != []:
twitter = Twython(

settings.TWITTER_CONSUMER_KEY,
settings.TWITTER_CONSUMER_SECRET,
settings.TWITTER_ACCESS_TOKEN,
settings.TWITTER_ACCESS_SECRET

)
for showtime in now_starting showtimes:
status = ""{@}" now playing at #CIFF40@. See my analysis https://ciff.coderedcorp.com{1}"\

.format(str(showtime.movie), showtime.movie.get absolute_url())
twitter.update_status(status=status)
showtime.has _now _playing tweet = True
showtime.save()
print(showtime)

a3
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

5. Twitter API (simple example)

def djangocon_tweet():
twitter = Twython(
settings.TWITTER_CONSUMER_KEY,
settings. TWITTER_CONSUMER_SECRET,
settings.TWITTER_ACCESS_TOKEN,
settings.TWITTER_ACCESS_SECRET
)
status = "Check out the talk about me at #djangocon https://2016.djangocon.us/schedule/presentation/36/"
twitter.update_ status(status=status)
print("Tweeted!")

-
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

6. Schedule Tweets with Cron

- It’s as easy as creating another management command!

« Then call the management command from cron.

« Make sure cron command runs in appropriate virtualenv.

*/5*** *

username

cd/ var /'www/ciffoboot &&
/ virtualenvs / ciffbot /bin/python3
Ivar/www/ciffbot/manage.py update_twitter >
/ var /log/ ciffoot /ciffbot.log 2>&1

a3
CoDERED BUILDING BRILLIANT TECHNOLOGY

/. Searching the Models
Haystack/Whoosh

« One of the simplest ways to search Django models

Haystack acts as a search wrapper or API

Whoosh acts as the search backend.

Think haystack = Django ORM, whoosh = SQLite

http://haystacksearch.org/

. \‘o. \
CopERED . BUILDING BRILLIANT TECHNOLOGY 2016 \\ \}

http://haystacksearch.org/

/. Searching the Models

Settings

INSTALLED_APPS = (

)

"django.
‘django.
"django.
"django.
'django.
"diango.

contrib
contrib
contrib
contrib
contrib
contrib

"haystack’,

‘web ",

.admin’,
.auth’,
.contenttypes’,
.sessions’,
.messages’,
.staticfiles’,

HAYSTACK_CONNECTIONS = {
"default’': {

CopERED .

"ENGINE':

}>

"haystack.backends
"PATH': os.path.join(os.path.dirname(_ file),

.whoosh_backend.WhooshEngine"',
'whoosh_index'),

BUILDING BRILLIANT TECHNOLOGY

/. Searching the Models

search_indexes.py

from haystack import indexes
from web.models import Movie

class MovieIndex(indexes.SearchIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
name = indexes.CharField(model _attr="name')
description = indexes.CharField(model attr="'description')

def get model(self):
return Movie

def index_queryset(self, using=None):
return self.get model().objects.all()

"
CoDERED BUILDING BRILLIANT TECHNOLOGY 2016

/. Searching the Models

views.py

from django.shortcuts import render
from haystack.forms import SearchForm
from haystack.query import SearchQuerySet

def search(request):

search_term = request.GET['q’]

movies = []

if search_term !=
results = SearchQuerySet().auto_query(search_term)
for result in results:

movies.append(Movie.objects.get(id=result.pk))

else:

movies = []

return render(request, ‘web/search.html’', {'movies’': movies})

"
CoDERED BUILDING BRILLIANT TECHNOLOGY

/. Searching the Models

« Now just build the index.

python manage.py update_index

[haystack]
build solr schema
clear_index
haystack_info
rebuild_index
update_index

"
CoDERED BUILDING BRILLIANT TECHNOLOGY

Thank You!

salvino@coderedcorp.com

Twitter: @vincesalvino

CoDERED . BUILDING BRILLIANT TECHNOLOGY 2016

mailto:salvino@coderedcorp.com

